IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

An alternative S-matrix for A" = 6 Chern-Simons theory?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
JHEP03(2009)068
(http://iopscience.iop.org/1126-6708/2009/03/068)

The Table of Contents and more related content is available

Download details:
IP Address: 80.92.225.132
The article was downloaded on 03/04/2010 at 10:39

Please note that terms and conditions apply.



http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/03
http://iopscience.iop.org/1126-6708/2009/03/068/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

PUBLISHED BY IOP PUBLISHING FOR SISSA

I

RECEIVED: October 21, 2008
REVISED: January 29, 2009
ACCEPTED: February 20, 2009
PUBLISHED: March 10, 2009

An alternative S-matrix for N/ = 6 Chern-Simons
theory?

Changrim Ahn® and Rafael I. Nepomechie®

@ Department of Physics, Ewha Womans University,
Seoul 120-750, South Korea

b Physics Department, University of Miami,
P.O. Box 248046, Coral Gables, FL 3312/ U.S.A.

FE-mail: ahn@ewha.ac.kr, nepomechie@physics.miami.edu

ABSTRACT: We have recently proposed an S-matrix for the planar limit of the N' = 6
superconformal Chern-Simons theory of Aharony, Bergman, Jafferis and Maldacena which
leads to the all-loop Bethe ansatz equations conjectured by Gromov and Vieira. An unusual
feature of this proposal is that the scattering of A and B particles is reflectionless. We
consider here an alternative S-matrix, for which A — B scattering is not reflectionless. We
argue that this S-matrix does not lead to the Bethe ansatz equations which are consistent
with perturbative computations.
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1 Introduction

The fact that the 3-dimensional N' = 6 superconformal Chern-Simons (CS) theory of
Aharony, Bergman, Jafferis and Maldacena [1] has a planar limit suggests that it may
have further features in common with 4-dimensional N' = 4 superconformal Yang-Mills
(YM) theory. Indeed, it was shown by Minahan and Zarembo [2] (see also [3]) that the
two-loop anomalous dimensions of the scalar operators in planar A/ = 6 CS theory are de-
scribed by a certain integrable spin chain. Furthermore, they conjectured two-loop Bethe
ansatz equations (BAEs) for the full theory. Gromov and Vieira [4] subsequently conjec-
tured all-loop BAEs, which reduce to those of Minahan and Zarembo in the weak-coupling
limit. Recently, three groups [5-7] computed the one-loop correction to the energy of a
folded spinning string, and seemed to find disagreement with the prediction of the all-loop
BAEs. This controversy may be resolved by a non-zero one-loop correction in the central
interpolating function h(\) as suggested recently in [8]. (See also [9].)

Based on the spectrum and symmetries of the model [2, 10-12], we proposed an all-
loop S-matrix [13] which reproduces the all-loop BAEs. That S-matrix has the unusual
feature that the scattering of A and B particles is reflectionless,

AB — BA

(instead of AB — B A+ A B). Given the uncertainty in these all-loop proposals, one may
well wonder whether there exists another S-matrix which

(i) is not reflectionless; and

(ii) is consistent with the two-loop BAEs of Minahan and Zarembo [2], which are on

firmer ground.

This note is an effort to address this question. Unfortunately, we do not give a definitive
answer. Nevertheless, our failure to find such an alternative S-matrix provides increased
confidence in our original proposal [13], and in the corresponding all-loop BAEs [4].



The outline of this paper is as follows. In section 2 we construct a candidate alternative
S-matrix. The key feature of this S-matrix which allows for reflection is that it factorizes
into the product of a nontrivial flavor part and an SU(2|2) part. In order to simplify the
ensuing analysis, we make the unphysical assumption that the flavor part is SU(2)-invariant.
(We later argue that this simplifying assumption does not alter the main conclusion.) In
section 3 we derive the corresponding all-loops BAEs by diagonalizing the Bethe-Yang
matrix. We perform the weak-coupling limit, and show that the result is not consistent
with the two-loop BAEs [2]. We conclude in section 4 with a brief discussion of our results.

2 S-matrix

We represent the elementary excitations by Zamolodchikov-Faddeev operators A:; (D),
where a € {1,2} is a flavor index (e = 1 corresponds to an A-particle, and a = 2 cor-
responds to a B-particle), and i € {1,2,3,4} is the SU(2|2) index. When acting on the
vacuum state |0), these operators create corresponding asymptotic particle states of mo-
mentum p and energy E given by [10-12, 14]

1
E:,/Z+4gﬂsin2§, (2.1)

where ¢ is a function of the 't Hooft coupling
g="h(}), (2.2)

with A(X) ~ A for small A, and h(\) ~ /A\/2 for large \.

A way to allow for reflection of A and B particles, while still maintaining integrability,
is to assume that the S-matrix factorizes into the product of a nontrivial flavor part and
an SU(2|2) part,

Al (p1) Alj(pz) = So(p1,p2) S4Y (p1,p2) 52]] (p1,p2) AZ,j,(pz) Al (), (2.3)

where both the flavor S-matrix Sg/bb/ (p1,p2) and the SU(2|2) S-matrix §ii;»jl(p1,p2) satisfy
the Yang-Baxter equation (YBE), and Sy(p1,p2) is an unknown scalar factor.

The SU(2|2) part is essentially fixed [15, 16], with g given by (2.2). More precisely, in
order to carry out the asymptotic Bethe ansatz analysis below, we assume that :5’\:/]] / (p1,p2)
is the graded version [17] of the SU(2|2)-invariant S-matrix given in [18].

Since the only known symmetry relating A and B particles is C P symmetry, the flavor
S-matrix should not have any more symmetry. Solutions of the YBE with only discrete
symmetry are known, such as the R-matrix of the XYZ spin chain/8-vertex model; and in
principle, we could proceed by assuming that the flavor S-matrix is of that form. However,
in order to simplify the ensuing analysis, we instead make the unphysical assumption
that the flavor S-matrix is SU(2)-invariant. We shall later argue that this simplifying
assumption does not alter the main conclusion.

As is well-known (see, e.g., [19]), SU(2) symmetry and factorizability almost completely
fix the structure of the S-matrix. Indeed, SU(2) symmetry implies that, up to an overall



scalar factor,
Sav’ (pr,p2) =105 05 + f(p1.p2)05 0y (24)
where f(p1,p2) is an arbitrary scalar function of py,ps. The YBE

Si2(p1,p2) S13(p1,p3) S23(p2, p3) = Sa23(p2,p3) S13(p1,p3) S12(p1, p2) (2.5)

then implies that

f(p1,p2) = f(p1.p3) — f(p2,p3), (2.6)

which in turn implies that

f(p1.p2) = a(p1) — a(p2), (2.7)

where a(p) is an arbitrary function of p. In the weak-coupling limit, a(p) must be a linear
function of p, say

a(p) =p, (weak coupling) (2.8)

in order that f(p1,p2) be a function of p; — pa, i.e., that the S-matrix have the “difference”
property. We conclude that

Sav” (pr,p2) =10 8 + (a(pr) — a(p2)) 07 57 - (29)
In matrix form,
a(p1,p2) 0 0 0
S(p1,p2) = 8 b(p1i, p2) b(pf,pQ) 8 , (2.10)
0 0 0 a(p1,p2)
where
a(p1,p2) = a(p1) — a(p2) + 1, b(p1,p2) = a(p1) — a(p2) - (2.11)
Note that
b(p1,p2) = —b(p2,p1).- (2.12)

The S-matrix (2.3), unlike the one which we proposed in [13], does allow for reflection
in A — B scattering. Examples of integrable models with S-matrices of product form
include [20]. To determine the function a, one may need to impose CP symmetry between
A- and B-particles which leads to a crossing relation. We shall not pursue this here since
our conclusion does not depend on the explicit form of a.



3 Asymptotic Bethe ansatz

We now proceed to derive the corresponding all-loop BAEs. The analysis is similar to the
one for N'=4 YM theory [16, 17]; and as in [13], we follow closely the latter reference. We
consider a set of N particles with momenta p; (i = 1,..., N) which are widely separated

on a ring of length L’. Quantization conditions for these momenta follow from imposing

periodic boundary conditions on the wavefunction. Taking a particle with momentum py,

around the ring leads to the Bethe-Yang equations
e P = AN = pr, i (N wgn 61, k=1,...,N,
where A(X, {pi }; {\j, 11j,&;}) are the eigenvalues of the transfer matrix
t(A {pit) = Ao(A {pi}) tsuge) (A {pi}) @ tsugzay (A {pi})

where

)‘{pz HSO)‘pz s

tSU(Q ()‘? {pl}) - tI‘a Sal()\,pl) e SG«N()"pN) )
tsup2) (A Api}) = stra Sa1 (A p1) -+ San(NpN) -

Hence, the eigenvalues are given by

AN AP AN, 15,651 = Mo(M Api}) Asu) (N i} {€5 1) Asue) (M Apits AN 15})

where the SU(2) part is given by the well-known algebraic Bethe ansatz result

N mo
Asu) (M Apii {61 Hmp@ H s, 0 + [ [ s(2.4).
j=1 i=1 j=1

with

_alp,p2)  alpr) —alps) +i
5(p1,p2) = b(pi,p2)  alp1) —a(p2)

and {{;} obey the BAEs
N mo
H gkapl H gk,g] kzla"'am()'
im1 j,gk

In particular, due to the property (2.12), the eigenvalues at A\ = py are given by

Asu) (A = pr; {pi}; {&5) Ha (Pk, pi H s(&5 k) -

(3.3)

(3.4)

(3.6)

(3.8)



Moreover, the SU(2|2) part is given by [17]
. [om) —w(pi)n(pi)} M [ x—<A>—x+<AJ>}
( :

Asuiz) A Apids {Aj, 15}) = H 2= (\) — 2t (p;) n(N)
i=1 ! j=1

O —atp) 17 [ ™ () — 2t (\)] 72 7N + = o
_H[w‘(A)—ﬁ(m)n(AJ{.H[H(A)W(A)—w*(k‘)]Hx*(AH I
1

i=1

l
(Sl “A)*x-m"j‘l‘ﬁ}
1 — ~ )
] B O e ol PR OV R VR TR 7
N _ 1 m + ) — 1
1 et =t (o) 1~ e n(e) 11 [ W) - =m (3.9)
i=1 = (A) —aF(pi) 1 - x*()\)i:*(pi) (M) j=1 x+()‘J) B x*l(/\)

where n(\) = ¢*/2and the corresponding BAEs are given by

eiP/Qlj—V[xi()\j)—l'(pi) _ ﬁx+()‘j)+m+(1)\j) _l:”_ké ’ j=1,...,m,
srrtOy) —at(p) L at(y) + ﬁ/\]) — =5
i) ey ey PrRmety (3.10)
j:1ﬂl_x+()\])_#)\1)—22—g z;}ﬂl—ﬂk—é’ gee ey M2, .
where

) 1 B 1 =
.%'_()\)_e)\’ x+()‘)+x+—()\)_x ()‘)_1__—()\)_57 P_;pl' (311)

In particular, the eigenvalue at A = p; is given simply by

N oo+ - m1 - 0\
_ iy oo TT1E () =2 (pi) nipi) z (pr) —zt(N))
Asupy (X = i, {pi} {Aj, 15}) il;[l[x_(pk)_ﬁ(pi) n(pk)] jl;[l[n(pk)ﬁ(pk)_ﬁw)} .
(3.12)

In view of (3.8), (3.12), the Bethe-Yang equations (3.1) take the form

e (~L+5-T5L) eip/zﬁ {So(pk,Pi)a(pk,Pi) [;ﬁ(pk) - x_(pi)”

Pl a=(pr) — =+ (pi)

i x~ — ()

Lo =+

J
where {)j, 11;,&;} are determined by the BAEs (3.7), (3.10).
Following [13, 17], we make the identifications

. k=1,...,N, (3.13)

~— | —

xi(pk):xjjk, k=1,..., K, =N,
1 .
er()‘J):—’ lea---aKl’
L1,j
x+()\K1+j) =235, 7=1....Ks, Ki+K3=mq,
- u27 - —
szjj? .]:15"'7K2:m2, (314)



and also define

=, +—+z, (3.15)

7]
4,5 Ly

DN | .

. — ot - _
and u; ; = g <$i,j + %) for i = 1,3. We assume the zero-momentum condition
2,7

Ky
P=> pi;=0, (3.16)
j=1

and (for aesthetic reasons) we perform the shift

1
a(§y) = al&) = 5- (3.17)
The Bethe-Yang equations (3.13) become
Ky + _
: 4 KatKi-Ky a [ Tak — Tay
e ) 2 113 So(pak: pas) [a(par) — alpas) + 1] | —=—
i=1 x4,k - x4,z'
P Ky 1l — —— Ky -
" lm—i (&) — alpag) + 5 ﬂ Ty P15 ﬁ Ty — T3, k=1 K. (3.18)
N - _ - 1 + - ] Y et I Y .
j=1 O‘(SJ) O‘(p47k) ; j=1 1 mz,kl“l,j j=1 Ly — L3,
and the BAEs (3.7), (3.10) become
K .
ﬁ a(ék) —alpai) +3 _ ﬁ &) —al&)+i g
i=1 a(ék‘) - a(p4,l') - % j=1 Oé(é.k) - a(g]) ? ' ’ ' ’
Jj#k
Ky 1— —1 K
H4 xlyjlx42 :HQULJ UQZ+§ ] - 17 7K17
i=1 L= Ty 5Ty, =1 U1, w2, 2
Ky )
.%'37 X u u + 5
’ = = 2 2 % ) J = 1’ . >K3 s
=1 xgvj - x4,l =1 u37.7 u27l - 5
K, i K3 i K> .
U] — UL+ 5 U] — U3+ 5 —
SR <UL R H—Wvl upktt l=1,...,Ko, (3.19)
]:1 u27l ul?] 2 _]:1 u27l ug?] 2 k=1 u27l B u2’k; -t

k#l

respectively. Egs. (3.18), (3.19) constitute our result for the all-loop BAEs corresponding
to the S-matrix (2.3), (2.9).

The weak-coupling limit corresponds to [4]

1 .
:E—>E, :Ui—>—<u:|:%>, (3.20)



with ¢ — 0 and u finite. Recalling (2.8), we obtain

i\ K
Uqrp+35 U Ug;+1
<73> ZH{So(m,k,m,z')(Mk Pa,i+i) <74k - >}

Ugk— 3 Ug o —Ug;—1

i=1
i
p4k+2 Ugf — U35 — 5
XH T =1, K,
— D4, QJ ] Udk — U3 + 5
mo . Ky
Sk — & +irr &k —Pai— 3
NiE= =1
- .4 i — 4 s 110
J;i gk o g] t i=1 gk‘ — D4 + 2
J
Ko i
Ur; — U2l + 3 .
V=1l i J=T1. K
=1 1.j 2,1 2
2 i K4
LT U8 20t g T U8~ Wi P
- U s — 1 _l u—u—|—1’ ]_7' s IX3
=1 3:J 2,0 7 9 ;= U3 4,4 T 3
(3.21)
Ko . Ky Ks ;
1_1—[ u2,l—u2,k—ZHu2l ul,]+2 Uz —u3j+3 11 K
- — a0 — 1 oy LA2
I;;} Up i~ U2k Fe je=1 Y20, §j:1 U2, —U3,5—3
where we have defined
Ky+ K — K3
L=-L'+—"—— —= (3.22)
2
and used
; Ug + %
ek = —= 2 (3.23)
U4k — 3

Evidently, regardless of the choice of scalar factor So(p1, p2), the set of BAEs (3.21) does not
completely match any of the equivalent sets of BAEs proposed by Minahan and Zarembo [2].
In particular, while the latter have two “massive” nodes, the former has only one. We would
have obtained a similar result had we chosen the flavor S-matrix to be of the XYZ chain/8-
vertex model form rather than (2.9). We conclude that an S-matrix of the form (2.3) is
not consistent with the perturbative BAEs [2].

4 Discussion

We have considered an alternative S-matrix for A/ = 6 CS which is symmetric under
SU(2|2). In contrast with our original proposal [13], this S-matrix has the tensor product
form (2.3); and it has not only an SU(2|2) part, but also a nontrivial flavor part which
allows for reflection in A — B scattering. Although we have not proved that this tensor
product structure is the only possible way of introducing reflection while both maintaining
integrability and respecting the system’s symmetry, we have not found any other. We have
argued that such an S-matrix is not consistent with the perturbative BAEs [2]. This gives



increased confidence in our original proposal [13]. Further support for the proposal [13]
has recently been found in computations of finite-size corrections to the dispersion relation
of giant magnons [21, 22|, and in the direct coordinate Bethe ansatz computation of the
two-loop scalar-sector S-matrix [23].

Acknowledgments

We thank K. Zarembo for raising the question which we address, and for helpful discussions.
We are also grateful to the Referee for comments on an earlier version of this paper. This
work was supported in part by KRF-2007-313-C00150 and WCU grant R32-2008-000-
10130-0 (CA) and by the National Science Foundation under Grants PHY-0244261 and
PHY-0554821 (RN).

References

[1] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N' = 6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091
[arXiv:0806.1218] [SPIRES].

[2] J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons,
JHEP 09 (2008) 040 [arXiv:0806.3951] [SPIRES].

[3] D. Bak and S.-J. Rey, Integrable spin chain in superconformal Chern-Simons theory,
JHEP 10 (2008) 053 [arXiv:0807.2063| [SPIRES].

[4] N. Gromov and P. Vieira, The all loop AdS4/CFTs Bethe ansatz, JHEP 01 (2009) 016
[arXiv:0807.0777] [SPIRES].

[5] T. McLoughlin and R. Roiban, Spinning strings at one-loop in AdSs x P3,
JHEP 12 (2008) 101 [arXiv:0807.39685] [SPIRES].

[6] L.F. Alday, G. Arutyunov and D. Bykov, Semiclassical quantization of spinning strings in
AdS,; x CP3, JHEP 11 (2008) 089 [arXiv:0807.4400| [SPIRES].

[7] C. Krishnan, AdS,/CFTs at one loop, JHEP 09 (2008) 092 [arXiv:0807.4561] [SPIRES].

[8] T. McLoughlin, R. Roiban and A.A. Tseytlin, Quantum spinning strings in AdS,y x CP3:
testing the Bethe ansatz proposal, JHEP 11 (2008) 069 [arXiv:0809.4038] [SPIRES].

[9] N. Gromov and V. Mikhaylov, Comment on the scaling function in AdSy x C'P3,
arXiv:0807.4897 [SPIRES].

[10] T. Nishioka and T. Takayanagi, On type IIA Penrose limit and N'= 6 Chern-Simons
theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [SPIRES].

[11] D. Gaiotto, S. Giombi and X. Yin, Spin chains in N = 6 superconformal
Chern-Simons-matter theory, arXiv:0806.4589 [SPIRES].

[12] G. Grignani, T. Harmark and M. Orselli, The SU(2) x SU(2) sector in the string dual of
N =6 superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115
[arXiv:0806.4959] [SPIRES].

[13] C. Ahn and R.I. Nepomechie, N’ = 6 super Chern-Simons theory S-matriz and all-loop Bethe
ansatz equations, JHEP 09 (2008) 010 [arXiv:0807.1924] [SPIRES].


http://jhep.sissa.it/stdsearch?paper=10%282008%29091
http://arxiv.org/abs/0806.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1218
http://jhep.sissa.it/stdsearch?paper=09%282008%29040
http://arxiv.org/abs/0806.3951
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.3951
http://jhep.sissa.it/stdsearch?paper=10%282008%29053
http://arxiv.org/abs/0807.2063
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.2063
http://jhep.sissa.it/stdsearch?paper=01%282009%29016
http://arxiv.org/abs/0807.0777
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.0777
http://jhep.sissa.it/stdsearch?paper=12%282008%29101
http://arxiv.org/abs/0807.3965
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.3965
http://jhep.sissa.it/stdsearch?paper=11%282008%29089
http://arxiv.org/abs/0807.4400
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.4400
http://jhep.sissa.it/stdsearch?paper=09%282008%29092
http://arxiv.org/abs/0807.4561
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.4561
http://jhep.sissa.it/stdsearch?paper=11%282008%29069
http://arxiv.org/abs/0809.4038
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.4038
http://arxiv.org/abs/0807.4897
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.4897
http://jhep.sissa.it/stdsearch?paper=08%282008%29001
http://arxiv.org/abs/0806.3391
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.3391
http://arxiv.org/abs/0806.4589
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.4589
http://dx.doi.org/10.1016/j.nuclphysb.2008.10.019
http://arxiv.org/abs/0806.4959
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.4959
http://jhep.sissa.it/stdsearch?paper=09%282008%29010
http://arxiv.org/abs/0807.1924
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.1924

[14] D. Berenstein and D. Trancanelli, Three-dimensional N' =6 SCFT’s and their membrane
dynamics, Phys. Rev. D 78 (2008) 106009 [arXiv:0808.2503] [SPIRES].

[15] M. Staudacher, The factorized S-matriz of CFT/AdS, JHEP 05 (2005) 054
[hep-th/0412188] [SPIRES].

[16] N. Beisert, The SU(2|2) dynamic S-matriz, Adv. Theor. Math. Phys. 12 (2008) 945
[hep-th/0511082] [SPIRES]; The analytic Bethe ansatz for a chain with centrally extended
SU(2|2) symmetry, J. Stat. Mech. (2007) P01017 [n1in/0610017] [SPIRES].

[17] M.J. Martins and C.S. Melo, The Bethe ansatz approach for factorizable centrally extended
S-matrices, Nucl. Phys. B 785 (2007) 246 [hep-th/0703086] [SPIRES].

[18] G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for
AdSs x S® superstring, JHEP 04 (2007) 002 [hep-th/0612229] [SPIRES].

[19] N. Beisert, Integrability in AdS/CFT, lecture at the workshop Strong Fields, Integrability and
Strings, Newton Institute, Cambridge U.K. (2007).

[20] C. Ahn, D. Bernard and A. LeClair, Fractional supersymmetries in perturbed coset CFTs and
integrable soliton theory, Nucl. Phys. B 346 (1990) 409 [SPIRES];
N. Reshetikhin, S-matrices in integrable models of isotropical magnetic chains. 1,
J. Phys. A 24 (1991) 3299 [SPIRES].

[21] D. Bombardelli and D. Fioravanti, Finite-size corrections of the CP? giant magnons: the
Liischer terms, arXiv:0810.0704 [SPIRES].

[22] T. Lukowski and O.0. Sax, Finite size giant magnons in the SU(2) x SU(2) sector of
AdSy x CP3, JHEP 12 (2008) 073 [arXiv:0810.1246] [SPIRES).

[23] C. Ahn and R.I. Nepomechie, Two-loop test of the N' =6 Chern-Simons theory S-matriz,
arXiv:0901.3334 [SPIRES].


http://dx.doi.org/10.1103/PhysRevD.78.106009
http://arxiv.org/abs/0808.2503
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.2503
http://jhep.sissa.it/stdsearch?paper=05%282005%29054
http://arxiv.org/abs/hep-th/0412188
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412188
http://arxiv.org/abs/hep-th/0511082
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0511082
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0701%2CP017
http://arxiv.org/abs/nlin/0610017
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=NLIN/0610017
http://dx.doi.org/10.1016/j.nuclphysb.2007.05.021
http://arxiv.org/abs/hep-th/0703086
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0703086
http://jhep.sissa.it/stdsearch?paper=04%282007%29002
http://arxiv.org/abs/hep-th/0612229
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0612229
http://dx.doi.org/10.1016/0550-3213(90)90287-N
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B346,409
http://dx.doi.org/10.1088/0305-4470/24/14/017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB,A24,3299
http://arxiv.org/abs/0810.0704
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.0704
http://jhep.sissa.it/stdsearch?paper=12%282008%29073
http://arxiv.org/abs/0810.1246
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.1246
http://arxiv.org/abs/0901.3334
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.3334

	Introduction
	S-matrix
	Asymptotic Bethe ansatz
	Discussion

